Weightless neural network parameters and architecture selection in a quantum computer

نویسندگان

  • Adenilton J. da Silva
  • Wilson Rosa de Oliveira
  • Teresa Bernarda Ludermir
چکیده

Training artificial neural networks requires a tedious empirical evaluation to determine a suitable neural network architecture. To avoid this empirical process several techniques have been proposed to automatise the architecture selection process. In this paper, we propose a method to perform parameter and architecture selection for a quantum weightless neural network (qWNN). The architecture selection is performed through the learning procedure of a qWNN with a learning algorithm that uses the principle of quantum superposition and a non-linear quantum operator. The main advantage of the proposed method is that it performs a global search in the space of qWNN architecture and parameters rather than a local search.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Outlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means

One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...

متن کامل

Training a classical weightless neural network in a quantum computer

The purpose of this paper is to investigate a new quantum learning algorithm for classical weightless neural networks. The learning algorithm creates a superposition of all possible neural network configurations for a given architecture. The performance of the network over the training set is stored entangled with neural configuration and quantum search is performed to amplify the probability a...

متن کامل

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

Artificial neural network architecture selection in a quantum computer

Miniaturisation of computers components is taking us from classical to quantum physics domain. Further reduction in computer components size eventually will lead to the development of computer systems whose components will be on such a small scale that quantum physics intrinsic properties must be taken into account. The expression quantum computation and a first formal model of a quantum comput...

متن کامل

Classical and superposed learning for quantum weightless neural networks

A supervised learning algorithm for quantum neural networks (QNN) based on a novel quantum neuron node implemented as a very simple quantum circuit is proposed and investigated. In contrast to the QNN published in the literature, the proposed model can perform both quantum learning and simulate the classical models. This is partly due to the neural model used elsewhere which has weights and non...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 183  شماره 

صفحات  -

تاریخ انتشار 2016